-
生物通官微
陪你抓住生命科技
跳动的脉搏
引进杰出人才发封面文章 被重点推荐
【字体: 大 中 小 】 时间:2009年07月31日 来源:生物通
编辑推荐:
中国科学院上海生命科学研究院神经科学研究所的研究人员发表论文“钠通道亚型Nav1.6和Nav1.2在动作电位爆发和反向传播中的不同贡献”,刊登于《Nature Neuroscience》杂志封面,同期的“News and Views”还发表了斯坦福大学Dulla和Huguenard教授对该论文的重点介绍。
生物通报道:来自中科院的消息,中国科学院上海生命科学研究院神经科学研究所的研究人员发表论文“钠通道亚型Nav1.6和Nav1.2在动作电位爆发和反向传播中的不同贡献”,刊登于《Nature Neuroscience》杂志封面,同期的“News and Views”还发表了斯坦福大学Dulla和Huguenard教授对该论文的重点介绍。
领导这一研究的是中国科学院神经科学研究所神经网络功能研究组组长舒友生博士,其早年毕业于湖南师范大学生物系,2006年被引进上海生命科学院,担任神经网络功能研究组组长,负责研究揭示脑功能紊乱的亚细胞、细胞和神经网络水平的机制。文章第一作者是其实验室的胡文钦博士。
该研究论文试图回答神经科学领域的一个基本问题:动作电位的产生和传播的机制是什么?传统观点认为,动作电位在神经元轴突始段(AIS)爆发是由于该部位分布有高密度的Na+通道。在皮层锥体神经元的AIS上,近端和远端都存在高密度的Na+通道,但是动作电位却偏向性地在AIS远端爆发,这是什么原因?胡文钦等应用免疫荧光染色的方法发现高阈值的Nav1.2通道聚集在AIS的近端,而低阈值的Nav1.6通道聚集在AIS远端—对应于动作电位的爆发位点;应用电生理和计算机模拟等方法发现AIS远端的Nav1.6通道促进动作电位的爆发,近端的Nav1.2通道促进动作电位向胞体和树突的反向传播。这样,两种Na+通道亚型在动作电位的爆发和反向传播中的贡献截然不同。由于动作电位的爆发阈值决定了神经元的兴奋性,同时,反向传播的动作电位又是特定突触可塑性的基础;因此,AIS上Na+通道亚型是有效控制神经系统兴奋性和可塑性的重要靶向分子。
附:
舒友生博士 1994 年毕业于湖南师范大学生物系,获理学士学位。1999 年获得中国科学院前上海脑研究所博士学位。1999 至 2000 年期间,在美国耶鲁大学麻醉系 Robert H. LaMotte 博士的实验室从事博士后研究工作;2000 至 2006 年在耶鲁大学神经生物学系 David A. McCormick 博士的实验室继续博士后工作。于 2006 年加入中国科学院神经科学研究所,担任神经网络功能研究组组长。本研究组的研究方向是揭示大脑皮层正常功能及病理条件下脑功能紊乱的亚细胞、细胞和神经网络水平的机制。
研究方向
本研究组的研究目标是揭示大脑皮层正常功能与病理条件下功能紊乱的神经基础,并阐明单个神经元及由其组成的神经网络活动在脑功能中的作用。感知觉、学习与记忆、以及睡眠等行为均可导致脑皮层的多种形式的电活动。这些电活动的正常或异常与个体行为是否正常息息相关,因此研究脑皮层电活动的发生机制十分重要。本研究组通过结合电生理和免疫组织化学等方法,应用离体脑切片和整体动物模型对皮层电活动的产生机理进行亚细胞水平、细胞水平和神经网络水平的多层次探讨。正在开展的研究工作包括:
顶树突和基底树突来源的突触信息在皮层锥体细胞上的整合机制
脑皮层锥体细胞的顶树突和基底树突接受不同来源的突触传入,这些传入如何在单个细胞上整合从而影响细胞的输出呢?本研究组希望回答这一问题,并对学习记忆的细胞水平机制进行研究。
阈下膜电位变化在轴突上的传播及其对突触传递的分级调控机制
传统理论认为,突触后电位经过整合到达阈电位并爆发动作电位,全或无的动作电位是细胞胞体和轴突终末之间的唯一通讯方式。利用首创的高阻抗封接轴突记录技术,我们惊奇地发现细胞胞体的阈下膜电位变化可以在轴突上传播很长的距离,并对突触传递起重要调节作用。我们正在对这一突触调节的机理进行研究,同时比较正常和病理情况下(如癫痫、脱髓鞘、缺氧损伤等)轴突的功能。
经验驱动的皮层细胞内在特性的改变在中枢可塑性变化中的贡献
在慢性神经病理性痛产生时,已知大脑皮层会产生可塑性变化;但对神经病理性痛过敏和痛超敏(或称触诱发痛)的皮层机制了解甚微。应用电生理技术和神经病理性痛模型,本研究组将研究皮层突触强度的长时程变化及细胞内在兴奋性的持续改变,从而探讨神经病理性痛的皮层机制。另外,癫痫和其他神经退行性疾病会长时间改变皮层细胞的内在特性,揭示内在特性的变化机理对控制疾病的产生和发展具有重要意义。
皮层神经网络的微环路及由它们产生的多种同步化电活动的机制
皮层抑制性中间神经元参与控制多种皮层同步化振荡的频率,如与认知任务相关的 gamma 和 theta 节律。我们的工作表明抑制性中间神经元的强烈激活可以中止慢节律振荡,而持续的网络电活动依赖兴奋性和抑制性细胞活动的动态平衡。我们现在正在回答的问题包括:兴奋性和抑制性神经元如何相互联系从而形成一个平衡的神经网络;细胞内在何种特性使神经网络迅速产生或终止其网络电活动。
附:
Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation
The distal end of the axon initial segment (AIS) is the preferred site for action potential initiation in cortical pyramidal neurons because of its high Na+ channel density. However, it is not clear why action potentials are not initiated at the proximal AIS, which has a similarly high Na+ channel density. We found that low-threshold Nav1.6 and high-threshold Nav1.2 channels preferentially accumulate at the distal and proximal AIS, respectively, and have distinct functions in action potential initiation and backpropagation. Patch-clamp recording from the axon cut end of pyramidal neurons in the rat prefrontal cortex revealed a high density of Na+ current and a progressive reduction in the half-activation voltage (up to 14 mV) with increasing distance from the soma at the AIS. Further modeling studies and simultaneous somatic and axonal recordings showed that distal Nav1.6 promotes action potential initiation, whereas proximal Nav1.2 promotes its backpropagation to the soma.