-
生物通官微
陪你抓住生命科技
跳动的脉搏
北大973项目发表Nature子刊文章
【字体: 大 中 小 】 时间:2012年04月20日 来源:生物通
编辑推荐:
来自北京大学,中国地质大学,中南大学等处的研究人员发表了题为“Growth of non-phototrophic microorganisms on solar energy through mineral photocatalysis”的文章,通过学科间合作,发现了非光合作用的微生物能利用太阳能进行生长,这对于深入理解微生物生命生长机制具有重要意义,相关成果公布在Nature Communications杂志上。
生物通报道:来自北京大学,中国地质大学,中南大学等处的研究人员发表了题为“Growth of non-phototrophic microorganisms on solar energy through mineral photocatalysis”的文章,通过学科间合作,发现了非光合作用的微生物能利用太阳能进行生长,这对于深入理解微生物生命生长机制具有重要意义,相关成果公布在Nature Communications杂志上。
文章的通讯作者是北京大学吴晓磊教授和中国地质大学董海良教授,这项研究矿物学、生物学、地质微生物学与环境科学等多领域合作的成果,得到国家重点基础研究发展计划(973计划)(2007CB815600)的资助。
长期以来,人们一直认为地球上微生物生命活动的能量来源主要是太阳能和化学物质(包括有机物和无机物)储存的能量。相应地,光能营养与化能营养成为地球上微生物生长代谢的两种基本的能量营养模式。传统的经典理论认为,光能营养型微生物由于含有光合色素,可利用太阳能将二氧化碳、水和其它无机物质合成为自身组成部分与营养物质。而化能营养型微生物由于缺少光合色素,自身不能直接转化与利用太阳光能量,只能从物质化学反应中通过元素化合价变化获取价态电子能量。
在这篇文章中,研究人员提出了不同的观点,他们发现自然界常见的半导体矿物如金红石(TiO2)、针铁矿(FeOOH)和闪锌矿(ZnS)等,在可见光下发生光催化作用所产生的光生电子,可沿着半导体矿物与微生物之间所形成的长程电子传递链最终传递给微生物,刺激并促进非光合化能自养型微生物氧化亚铁硫杆菌(A. ferrooxidans)和非光合化能异养型微生物粪产碱杆菌(A. faecalis)的大量生长,并能显著改变土壤微生物群落构成。
实验研究证实,半导体矿物日光催化作用促进非光合化能型微生物的生长量,与光子能量(波长)和光子-电子转化效率呈密切正相关关系。在固定光强下(8 mW/cm2),当波长从620 nm依次递减到420 nm时,氧化亚铁硫杆菌的细胞浓度增加一个数量级,体系光子-电子转化效率也从0.17 %升高到0.33 %。在此条件下整个体系的光能-生物质能转化效率为0.13 ‰到0.18 ‰。在模拟日光条件下,非光合化能异养型微生物粪产碱杆菌的细胞浓度较暗室无光照条件下增加三个数量级。
粪产碱杆菌在天然红壤微生物群落中的比例从初始不到5%左右,5天后迅速增加到70%左右,且一直维持在该浓度水平,相应暗室模拟对照实验中该菌比例却只有8%左右浓度水平。充分表明光生电子能够显著提高微生物的代谢活性与生物化学合成速度以及底物利用能力,预示这些微生物可以利用光生电子作为能源:继光能营养型微生物和化能营养型微生物之后发现的第三种类型—“光电能营养型微生物”。
这项研究成果将会改变人类对地球上微生物生命活动、能源获取与利用方式的理解,也为认识地球早期生物质能量的获取途径提供新思路,具有重要的理论意义。在发展新型的微生物培养技术、发酵工业技术、生物化工技术和环境生物技术等方面,具有广阔的应用前景。
(生物通:万纹)
原文摘要:
Growth of non-phototrophic microorganisms on solar energy through mineral photocatalysis
Phototrophy and chemotrophy are two dominant modes of microbial metabolism. To date, non-phototrophic microorganisms have been excluded from the solar light-centered phototrophic metabolism. Here we report a pathway that demonstrates a role of light in non-phototrophic microbial activity. In lab simulations, visible light-excited photoelectrons from metal oxide, metal sulfide, and iron oxide stimulated the growth of chemoautotrophic and heterotrophic bacteria. The measured bacterial growth was dependent on light wavelength and intensity, and the growth pattern matched the light absorption spectra of the minerals. The photon-to-biomass conversion efficiency was in the range of 0.13–1.90‰. Similar observations were obtained in a natural soil sample containing both bacteria and semiconducting minerals. Results from this study provide evidence for a newly identified, but possibly long-existing pathway, in which the metabolisms and growth of non-phototrophic bacteria can be stimulated by solar light through photocatalysis of semiconducting minerals.
下载安捷伦电子书《通过细胞代谢揭示新的药物靶点》探索如何通过代谢分析促进您的药物发现研究
10x Genomics新品Visium HD 开启单细胞分辨率的全转录组空间分析!
知名企业招聘
今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用
版权所有 生物通
Copyright© eBiotrade.com, All Rights Reserved
联系信箱:
粤ICP备09063491号